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Background 1

* The analysis of the features of the creators of
literary works has been widely studied.
» conducted for many purposes.

* We focused on the lyricists who are the
creators of the lyrics.

* However, lyricists have received less attention
than singers and lyrics.
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Motivation and Procedure 4

* We hypothesized that lyricists with fewer associated
singers would be more likely to capture the features.

* We mvestigated relationship between two elements.
* The variety of singers associated with the lyricist.

: Quantify as Lyricist-Singer entropy.

* The ease of capturing the features of the lyricist.

: Quantify as Lyric-Lyricist classification performance.



Lyricist-Singer Entropy
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Classification task 6

* We conducted Lyric-Lyricist classification.
* input:  lyric text

* output: lyricist who seems to write the input lyrics

 Performance is calculated trom the number of
correct and 1incorrect answers.

* Higher classification performance shows that it 1s easy
for us to capture the characteristics of lyricists.

* Lower classification performance shows that it is hard
for us to capture the characteristics of lyricists.



Experimental Procedure

* Investigated the relationship between LS entropy
and LL classification performance.

* By grouping the lyricists by LS entropy and comparing
the LL classification performance of each group.

* The experiment was conducted using as follows.
1. Data Collection
2. Grouping Lyricist (using two grouping methods)
3. Dataset Constructing (using two sampling methods)



Lyricist Distribution 8
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Classification Method 0

* Our classifier fine-tuned a BERT model pre-trained
on Japanese texts.
* input:  One-hot vector of lyrics, first 512 tokens.
* output: 10-dimensional vector of lyricist's probabilities.

* The procedure for constructing datasets 1s as
follows:
1. Select lyricists (using two sampling methods)
2. Select songs

3. Separate into training dataset, evaluation dataset, and
test dataset



Experimental Result 10
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Discussion 11

* Our experimental results suggest we can more
casily capture the characteristics of lyricists who
wrote for fewer singers because they are more

classifiable.

* The lower H group had higher Singer
classification performance. =
* Specifically, lyricists who wrote

lyrics for only one specific singer,
H = 0, had the best classification

performance.




Conclusion

12

* Our experimental results suggest H = 0 lyricists,
such as singer-songwriters, are promising for

capturing their characteristics.

* We 1nvestigated the relationship
between singer variety (LS entropy,
H) and the ease of capturing features
(LL classification performance)

 The zero LS entropy, H = 0, group
had the highest F1 score, 0.499.

Theme
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